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Abstract. In this paper we present two new Monte Carlo algorithms for simulating interacting
self-avoiding walks. These algorithms are built on the Berretti–Sokal and reptation algorithms
for simulating non-interacting self-avoiding walks respectively by adding a Metropolis step. We
enhance each algorithm by introducing special local moves. In addition, the reptation algorithm
is further enhanced by running the simulations as a multiple Markov chain. Each of these
algorithms are studied here through an analysis of their autocorrelation properties. In the case
of the Berretti–Sokal algorithm an increase in efficiency by a factor of around 40 is achieved
for non-interacting self-avoiding walks.

1. Introduction

There have recently been several Monte Carlo studies on the interacting self-avoiding walk
(ISAW) and related models [1–5]. In this paper we will present two new Monte Carlo
algorithms. Both algorithms are dynamic Monte Carlo algorithms which generate a highly
correlated sequence of ISAWs from a realization of a Markov chain with a given unique
limit distribution.

The first algorithm we study generates self-avoiding walks (SAWs) in the grand
canonical, or fixed fugacity, ensemble and was introduced by Berretti and Sokal a decade
ago [6]. It is now generally referred to as the Berretti–Sokal (B–S), or sometimes ‘slithering
tortoise’ algorithm. The second algorithm has been around for more than a quarter of a
century and goes under the name of the ‘reptation’ or ‘slithering snake’ algorithm. It was first
introduced by Kronet al [7] and later Wall and Mandel [8] independently introduced their
own version. The algorithm generates SAWs of fixed length, i.e. in the canonical ensemble.
In its original form the algorithm isnot ergodic but the addition of a combination of local
and/or bilocal moves rectifies this flaw [9].

The efficiency of dynamic Monte Carlo algorithms is usually determined by the
integrated autocorrelation time. This quantity can be estimated for every observable. It
determines how many Monte Carlo steps are needed to produce an effectively independent
configuration. Theexponential autocorrelation time can also be determined for each
observable. More importantly, we can define the exponential autocorrelation time,τexp,
of the actual Markov chain as the relaxation time of the slowest mode of the system. This
quantity measures the rate of convergence of the Markov chain to its equilibrium distribution
from an arbitrary initial distribution. In practice it tells us how many Monte Carlo moves
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we need to execute before sampling from the Markov chain in order to avoid any bias in
the data from the initial state.

The exponential autocorrelation time plays an important role in algorithms employing
global moves such as the pivot algorithm where the slowest mode is an order ofn times
longer than the faster modes which arise from global observables (n is the length of the
ISAW). Since the algorithms that we are concerned with here employ only local and bilocal
moves, they do not have such a problem.

In section 2 we describe the B–S algorithm and a new local move which dramatically
improves its efficiency. We then give a heuristic argument to explain the resulting increased
efficiency. We then describe the addition of a Metropolis move which enables us to
simulate the effect of interactions at finite temperatures. We also discuss some programming
techniques which minimize the extra CPU time that is needed to execute this new move.
We repeat this procedure in section 3 for the reptation algorithm. In section 4 we estimate
the autocorrelation times of both algorithms for a variety of parameter values and compare
these with the other versions of the algorithms.

In this paper we only report on the relative efficiencies of the various algorithms. The
determination of the various properties of the ISAWs will be reported in a future publication
[10]. In particular we verify the new scaling form for the canonical partition function for
ISAWs in the low temperature phase which was proposed by Owczareket al [11].

2. The Berretti–Sokal–Metropolis algorithm

The B–S algorithm generates SAWs in a grand canonical ensemble at fixed monomer
fugacity z with one endpoint fixed at the origin and the other endpoint free. Eachn-step
walk has a probability ofzn/G(z) of occurring in the ensemble, where

G(z) =
∞∑
n=0

cnz
n (1)

is the grand partition function andcn is the number ofn-step SAWs.
There are two possible moves that can be attempted—the addition of a single bond onto

the end of the current walk in one ofq possible directions (whereq is the coordination
number of the lattice), or the deletion of the last bond of the walk. An attempt to append a
bond onto the end of the walk is successful if the self-avoidance constraint is not violated.
If it is violated and the walk intersects itself, then that move is rejected and the old
configuration is counted again in the sample (this is known as a null transition). Attempting
to delete a bond from the end of the walk is always successful unless the current walk is
the empty walk, i.e.n = 0. If this is the case, then a null transition occurs and the empty
walk is counted once more in the sample.

The relative probabilities of attempting to add or delete a bond from the walk are as
follows:

Pr(attempting to add any bond) = qz

1+ qz (2)

Pr(attempting to delete a bond) = 1

1+ qz . (3)

These probabilities are chosen to satisfy the detailed-balance condition for the grand
canonical ensemble at monomer fugacityz, i.e.

π(ψ)p(ψ → ψ ′) = π(ψ ′)p(ψ ′ → ψ). (4)
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Here the transition probability,p(ψ → ψ ′), is the probability of obtaining the walkψ ′ from
the walkψ after one Monte Carlo step. The probability distributionπ(ψ) is the equilibrium
distribution of the Markov chain and is given by

π(ψ) = z|ψ |

G(z)
χSAW(ψ) (5)

where|ψ | denotes the length of the walk andχSAW(ψ) is given by

χSAW(ψ) =
{

1 if ψ is a SAW

0 if ψ is not a SAW .
(6)

2.1. Simulating ISAWs

When simulating ISAWs, we introduce a Boltzmann factorω = eβε whereβ = 1/kBT and
ε > 0 is the contact energy, i.e. the amount of energy associated with each pair of nearest-
neighbour vertices of the walk (not connected by an edge of the walk). Each contact in a
configuration now contributes a weight ofω so that an ISAW will appear in the ensemble
with probability

π(ψ) = z|ψ |ωm(ψ)

G(z, ω)
χSAW(ψ) (7)

wherem(ψ) is the number of contacts in the configurationψ , G(z, ω) is the grand partition
function for ISAWs,

G(z, ω) =
∞∑
n=0

znZn(ω) (8)

whereZn(ω) is the canonical partition function

Zn(ω) =
∞∑
m=0

cmn ω
m (9)

andcmn is the number of configurations ofn-step walks withm nearest-neighbour contacts.
In order to correctly weight each configuration appearing in the sample, we need (7)

to be the equilibrium distribution of the Markov chain. This can be achieved by using the
standard Metropolis step [12] after any successful B–S move. To do this we calculate the
energy produced by a Monte Carlo move which is1m = m(t+1)−m(t), wherem(t) is the
number of nearest-neighbour contacts after thet th Monte Carlo step. This change in energy
gives us the probability of accepting the trial move as follows. We letp = min(1, ω1m). If
p = 1 then the trial move is automatically accepted. Ifp < 1 we choose a (pseudo) random
number uniformly distributed between 0 and 1 and compare it withp. If the number is
smaller thanp, then the trial move is accepted; otherwise it is rejected resulting in a null
transition. Notice thatp < 1 corresponds to1m < 0 which is possible only when we
attempt to delete a bond from the walk. Thus, any successful attempt at adding a bond to
the end of the walk is always accepted. We will refer to a B–S move combined with a
Metropolis step as the Berretti–Sokal–Metropolis (B–S–M) algorithm.

2.2. Enhanced B–S–M algorithm

A significant improvement in the efficiency of this algorithm can be obtained by the
following alteration. Instead of appending a single bond onto the end of the walk, we
append another SAW of length1n. Similarly, the deletion of a single bond at the end of
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the walk is now replaced by the deletion of the last1n bonds of the walk. This is similar to
the idea of strides due to Wallet al [13]. In order to avoid any bias, the particular mini-walk
that is appended to the current walk has to be chosen uniformly from all walks of length
1n. Since the number of walks grows exponentially with increasingn, in practice we are
restricted in our choice of1n by the amount of computer memory. As an example of the
memory requirements, choosing1n = 17 for two-dimensional walks requires approximately
50 MB of memory.

Since the lengths of the walks generated by the algorithm are multiples of1n, the
generating function for the ensemble of walks is changed from (1) to

G(z) =
∞∑
k=0

zk1nck1n. (10)

The transition probabilities given in (3) also have to be changed as follows:

Pr(attempting to add1n bonds) = c1nz
1n

1+ c1nz1n (11)

Pr(attempting to delete1n bonds) = 1

1+ c1nz1n . (12)

The extension required for the above move to simulate ISAWs is straightforward—just apply
the Metropolis step as mentioned above.

We now consider the efficiency of the algorithm for SAWs with this additional move.
First we note the heuristic argument provided by Berretti and Sokal which suggests that
the integrated autocorrelation timeτ should beO(〈n〉2). This is in fact correct to leading
order if ordinary random walks (i.e. with intersections allowed) are simulated with the
algorithm (see [6, appendix A]); this is a lower bound forτ . The argument assumes that
the length of the walks being simulated will execute a random walk on the integers with
inward drift. Thus, on average it will take〈n〉2 Monte Carlo steps for the empty walk to
be reached upon which a completely independent configuration will be generated since all
memory of the past is erased. In a later paper [14] an upper bound was obtained so that
O(〈n〉2) 6 τ 6 O(〈n〉γ+1), whereγ is a critical exponent associated with the entropy of
SAWs and is greater than 1. Here we argue that the reduction inτ ought to beO(1n2), at
least for ordinary random walks, when using the improvement mentioned above. To see this
simply replace〈n〉 in the original argument of Berretti and Sokal by〈n〉/1n. In section 4
we will provide some evidence to show that the reduction inτ more or less follows this
trend for SAWs. Therefore, this local move has the effect of reducing the length of the
walk by a factor of1n. Of course the consequence is an increase in the CPU time needed
to execute a Monte Carlo step, as we shall see below.

For ISAWs the1n dependence ofτ is rather more complicated. We find that the
algorithm no longer necessarily becomes more efficient with increasing1n. Instead, there
is now some optimal value of1n, above which the efficiency of the algorithm decreases.
Furthermore, this optimal value of1n decreases as the temperature is lowered. Thus, the
move is less effective for lower temperatures. This phenomenon is due to two effects, the
first being that as the walk collapses it is increasingly difficult to append many bonds onto
the end of the walk without violating self-avoidance. Secondly, the chance of the Metropolis
move being successful rapidly decreases with decreasing temperature, (i.e. increasingω)—
paccept= 1/ω1m.

There is no particular reason for choosing to append/delete only SAWs of fixed length
1n when using the algorithm. We therefore tried to further improve the efficiency of the
algorithm by allowing1n to vary. This is implemented by deciding on the maximum value
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that1n can take, call itk. A weight is then prescribed to every walk of length up tok.
We determined empirically that improved results can be achieved by choosing either

wi = i∑k
i=1 i

(13)

or

wi = i2∑k
i=1 i

2
. (14)

The modified transition probabilities for this alteration are

Pr(attempting to addi bonds) = ciz
iwi

1+∑k
i=1 ciz

iwi
(15)

Pr(attempting to deletei bonds) = wi

1+∑k
i=1 ciz

iwi
. (16)

For a certain range of temperatures this technique provided a gain of between 20% and 50%
in the efficiency of the algorithm over the fixed1n results.

2.3. Programming techniques

The efficiency of a Monte Carlo algorithm is not solely determined by its autocorrelation
time. The average amount of CPU time per Monte Carlo step is the other factor determining
the algorithm’s efficiency. Since both algorithms that we consider here only employ
local/bilocal moves, the CPU time isO(1). However, the relevant question in our case
is: how much does the move suggested above increase the CPU time per Monte Carlo step?
The increase is linear in1n but by using some careful programming techniques, we are
able to reduce the proportionality constant.

As pointed out by Berretti and Sokal [6], an efficient way to implement the B–S
algorithm in two dimensions is to use a bitmap and a linear linked list. However, a bitmap
is not practical in three dimensions since it uses too much memory. This situation would
normally require the use of a relatively slow hash table; however, a clever data structure
known as a sliding bitmap was introduced by Berretti and Sokal [15] which is about twice
as fast as a hash table. This data structure can be employed solely because the algorithm
uses only local moves. We found that when using a bitmap, it is expensive to repeatedly
calculate the addresses of lattice points. A better approach is to store the addresses of the
points of the walk in a linear list and then use these to calculate the addresses of their
neighbours. This approach only requires the use of inexpensive addition and subtraction
operations. In fact we use this same technique for the hash table which is required when
the reptation algorithm is implemented in three dimensions.

When implementing the algorithm for ISAWs an efficient method is required to deal
with the problem of calculating1m for each Monte Carlo step. Since bonds can only be
added or deleted from one end of the walk, we found that it was never necessary to calculate
1m when a bond was being deleted. All that is needed is to calculate and store the value
of 1m when theith bond is added onto the end of the walk in an array. When theith bond
is eventually deleted,1m will simply be the negative of theith entry in the array. There
are no short cuts for calculating1m when adding a bond onto the walk, but by using the
technique described above for calculating the addresses of the neighbours, we minimized
the time it takes to do this.
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3. The reptation–Metropolis algorithm

The reptation algorithm generates SAWs at fixedn with equal weight, i.e. in a canonical
ensemble. It is also very simple to generate ISAWs with this algorithm by including the
Metropolis move mentioned previously. Reptation is very similar to the B–S algorithm in
that its basic move is to delete one bond at the tail of the walk and simultaneously append
another bond at the head of the walk, thus conservingn. This algorithm was known to be
non-ergodic by its inventors. In order to make it ergodic, we must add a pair of local/bilocal
moves which allow the algorithm to extricate itself from otherwise frozen configurations.
A list of these moves is given in [16]. We chose to use the end-kink and kink-end moves
in our simulations.

In order to satisfy detailed balance, the end-kink and kink-end moves have to occur
with the correct relative probabilities. The ratio of these probabilities should be the ratio of
the number of two-step self-avoiding configurations to the number of kink configurations.
For example, in two dimensions this ratio is 9:2 (assuming immediate reversals are not
attempted) thus

Pr(attempting end-kink) = 2
9 Pr(attempting kink-end). (17)

There is no relationship between the probability of attempting a reptation move and the
probability of attempting an end-kink or kink-end move. We can therefore tune these
probabilities to maximize the efficiency of the algorithm. We will refer to the reptation
algorithm with a Metropolis move and ergodic extensions as the reptation–Metropolis (R–
M) algorithm.

To improve the R–M algorithm we simply delete the last1n bonds from the tail
of the walk and simultaneously add a mini-walk of length1n to the head of the walk.
‘Simultaneously’ here means that the mini-walk added onto the head of the walk is allowed
to occupy sites that were previously occupied by the last1n sites of the walk. The results
in employing this move were mixed, as can be seen in section 4. A significant improvement
to the overall efficiency of the algorithm was achieved when simulating ordinary SAWs.
However, the simulation of ISAWs, especially in the collapsed phase, yielded only marginal
gains (40–60%) in the overall efficiency of the algorithm.

The problem of simultaneously adding and deleting bonds from both sides of the walk
make the implementation of this algorithm significantly more difficult than the B–S–M
algorithm. The added problems of the end-kink and kink-end moves compound this difficulty
resulting in a much slower program. Calculating1m is also expensive since the short cut
available for B–S–M is not applicable here. This results in a stronger linear dependence on
CPU time with increasing1n meaning that any improvement inτ is significantly dampened
by an increase in CPU time. It is this very problem that leads to the slight gains in efficiency
for ISAWs. We were partly able to compensate for these problems by employing the method
of multiple Markov chains.

3.1. Multiple Markov chains

We will briefly outline this method here, for further details and a more comprehensive
explanation of why the algorithm helps see [3]. This technique consists of running a
set of Markov chains in parallel, where the state space of the Markov chains are ISAWs
in a canonical ensemble. The idea is to simulate each chain at a different temperature
and to regularly attempt to swap two neighbouring chains, i.e. to cool one chain and
heat up the other one. In order to perform this swapping, the chains must be ordered in
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increasing temperature so that neighbouring chains will be simulated at similar temperatures.
The probability with which the swapping move is accepted is chosen to satisfy detailed
balance. This probability also ensures that swapping two chains will not throw them
out of equilibrium—otherwise the algorithm would be useless. Thus the probability of
swapping two chains is reasonably high only when there is a sufficient overlap between
the distributions of the neighbouring chains. In practice this means that the temperature
difference between neighbouring chains has to be fairly small.

To see why this method reduces the autocorrelation time, consider simulating an ISAW
at some temperature† ω. The configuration of the ISAW will change as it normally does for a
single Markov chain until a swap move is successful between itself and a neighbouring chain.
One of the chains will then spend some time at a higher temperature where equilibriation is
rapid, resulting in a different configuration in a shorter time. Since the Markov chain will
still be in equilibrium, we can sample from it normally. These swaps should occur often
enough to ensure that they have an effect, i.e. at least several attempts should be made during
one ‘typical’ autocorrelation time. However, they should also be sparse enough to allow a
noticeable change in the configurations between swaps. The exact frequency of these swaps
was determined empirically for the particular set of temperatures being simulated.

3.2. Efficiency of the R–M algorithm

The argument for the efficiency of the reptation algorithm is similar to the argument for
the B–S algorithm. After approximatelyn2 Monte Carlo moves, the slithering motions of
the algorithm will have carried it forward a distance ofn steps. Thus, all of the original
bonds in the walk will have been replaced by new ones and we will therefore have a
new configuration. Once more we would expect this argument to be exact for ordinary
random walks although unlike B–S, we are not aware of any proof of this. To quantify the
improvement in the autocorrelation time with our bilocal move, simply replacen by n/1n
as before.

Most of the programming techniques mentioned above for the B–S algorithm are also
applicable for this algorithm. However in three dimensions a hash table is necessary since a
bitmap requires too much memory and a sliding bitmap cannot handle bilocal moves. The
hash function chosen should not be too complicated so that the addresses of the nearest
neighbours of a site can be calculated from the address of the site. Unfortunately the trick
used for the B–S algorithm when calculating1m is not applicable here since bonds can be
appended to either end of the walk. The calculation of1m whenever a reptation move is
applied is actually fairly cumbersome and this significantly slows the speed of the program.
This is more so in three dimensions where a hash table must be used.

4. Autocorrelation times

In this section we will present the comparison of the algorithms mentioned above with and
without the above enhancements. It is first important to note the method we used to estimate
the autocorrelation times for the various observables. The quantity we actually estimate
is the integrated autocorrelation time. This is done by first estimating thenormalized
autocorrelation functionρAA(s) = CAA(s)/CAA(0), whereCAA(s) ≡ 〈AtAt+s〉 − µ2

A, for
some observableA. The natural estimator ofCAA(s) for a time series withN samples of

† Even thoughω is not the actual temperature (it is a dimensionless parameter thatcontrols the temperature) we
will refer to it as such for convenience.
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some observableA is given by

ĈAA(s) = 1

N − |s|
N−|s|∑
t=1

(At − Ā)(At+|s| − Ā). (18)

Theoreticallyτint,A is the area underρAA(s), so we can estimate it by summing the area
underρ̂AA(s) = ĈAA(s)/ĈAA(0). This is fine for smalls, however ass gets large,ρAA(s)
typically decays exponentially to zero and the estimates ofρAA(s) for large s are mostly
noise. The question then arises as to where the sum should be cut off. In [17], Madras and
Sokal suggest

τ̂
(M)

int,A = 0.5+
M∑
k=1

ρAA(k) (19)

whereM = 10τ̂ (M)int,A. The factor of 10 is chosen arbitrarily and is there to ensure that
contributions are made from severalτint,A’s apart.

Finally, please note that all error bars appearing in this section are 95% confidence
intervals.

4.1. The B–S–M algorithm

We start off by demonstrating the gains in the autocorrelation time for the B–S–M algorithm.
The trial runs were performed on the square lattice at three temperatures and were chosen to
illustrate the advantages and limitations of the new local move. The results are summarized
in three tables which show the integrated autocorrelation time for the observablen. All the
simulations were performed on a Dec Alpha 250 4/266. The tables show the average time
taken to execute a Monte Carlo step in microseconds,tCPU, the time, in seconds, needed to
produce an independent configuration,tIND = 2τint,ntCPU and the gain in efficiencyE, where
E is defined as

E(1n) = tIND(1n = 1)

tIND(1n)
. (20)

Table 1 shows the results obtained when simulating ordinary SAWs, i.e.ω = 1. This is
where the new local move works best since fewer null transitions occur at this temperature.
The best result is obtained by choosing1n = 16 (we did not go beyond1n = 16 due to
memory constraints) and this increases the efficiency of the algorithm by a factor of 38.8.

Table 1. Autocorrelation times,τint,n, for SAWs with 〈n〉 ≈ 165 on the square lattice for a
variety of1n values using the B–S–M algorithm

Monte Carlo Efficiency
1n steps τint,n tCPU (µs) tIND (s) E

1 2× 1010 110 000± 3300 1.05 0.231 1.0± 0.03
2 3× 109 31 600± 1400 1.28 0.081 2.9± 0.2
4 5× 108 7 760± 390 1.93 0.030 7.7± 0.4
6 5× 108 3 900± 140 2.40 0.019 12.3± 0.6
8 2× 108 2 240± 100 2.87 0.013 18.0± 1.0

10 2× 108 1 540± 60 3.30 0.010 22.7± 1.1
12 1× 108 1 100± 50 3.87 8.5× 10−3 27.1± 1.5
14 1× 108 820± 30 4.25 7.0× 10−3 33.1± 1.6
16 1× 108 620± 20 4.80 6.0× 10−3 38.8± 1.7
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Figure 1. E as a function of1n for the enhanced B–S algorithm.

Table 2. Autocorrelation times,τint,n, at ω = 1.6 with 〈n〉 ≈ 165 on the square lattice for a
variety of1n values using the B–S–M algorithm.

Monte Carlo Efficiency
1n steps τint,n tCPU (µs) tIND (s) E

1 1× 1010 120 000± 5300 1.16 0.278 1.0± 0.04
2 3× 109 36 400± 1700 1.66 0.121 2.3± 0.2
4 2× 109 14 100± 500 2.10 0.059 4.7± 0.3
6 1× 109 9 700± 300 2.45 0.048 5.9± 0.3
8 1× 109 8 800± 200 2.64 0.046 6.0± 0.3

10 1× 109 8 500± 200 2.81 0.048 5.8± 0.3
12 1× 109 9 400± 300 2.90 0.055 5.1± 0.3
14 1× 109 11 600± 500 3.05 0.071 3.9± 0.2

The behaviour ofτint,n is shown by performing a log–log plot ofτint,n versus1n. The data
formed a straight line whose slope was estimated by the linear least squares method. The
slope was found to be−1.86± 0.02, significantly away from the random walk result of
−2. We also performed fits fortCPU andE as functions of1n. The behaviour oftCPU was
linear and the regression equation was found to betCPU= 0.251n+ 0.86.

Figure 1 shows a plot ofE versus1n. For small1n it is expected thatE ∼ 1n1.86,
whilst for large1n it is expected thatE ∼ 1n0.86. However, for the range of1n in these
simulations the behaviour ofE is intermediate between these two asymptotic regions and
thus neither asymptotic behaviour is evident in the figure.

Table 2 shows the results obtained for ISAWs atω = 1.6. An important point to note
in table 2 is thatτint,n is not monotonically decreasing with1n. The best result occurs for
1n = 8 where we see an improvement by a factor of 6.0. This occurs when the acceptance
fraction of a Monte Carlo step outweighs the larger conformational change obtained for
increasing1n. Unlike the SAW result, the plot oftCPU versus1n is not linear since many
attempts to append mini-walks violate self-avoidance and hence the expensive operation of
calculating1m is not performed as often.

Table 3 shows the efficiency of the algorithm in the collapsed phase of the model where
ω = 2.05. The trends that were present in table 2 are magnified in table 3. We see that the
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Table 3. Autocorrelation times,τint,n, at ω = 2.05 with 〈n〉 ≈ 200 on the square lattice for a
variety of1n values using the B–S–M algorithm.

Monte Carlo Efficiency
1n steps τint,n tCPU (µs) tIND (s) E

1 8× 1010 1 100 000± 100 000 1.16 2.55 1.0± 0.1
2 2.5× 1010 460 000± 50 000 1.55 1.43 1.8± 0.3
4 2× 1010 410 000± 50 000 1.77 1.45 1.8± 0.3
6 2.5× 1010 770 000± 110 000 1.76 2.71 0.9± 0.2

Table 4. Autocorrelation times,τint,R2
n
, for SAWs with n = 500 on the square lattice for a

variety of1n values using the R–M algorithm

Monte Carlo Efficiency
1n steps τint,R2

n
tCPU (µs) tIND (s) E

1 5× 109 56 700± 2500 1.77 0.200 1± 0.04
2 2× 109 19 800± 800 2.32 0.092 2.2± 0.1
4 1× 109 6 600± 200 2.88 0.038 5.3± 0.3
6 5× 108 3 400± 100 3.65 0.025 8.1± 0.4
8 2× 108 2 000± 80 4.27 0.017 11.7± 0.7

10 2× 108 1 500± 50 4.89 0.016 13.7± 0.8
12 2× 108 1 150± 40 5.42 0.012 16.1± 0.9
14 2× 108 910± 30 5.96 0.011 18.5± 1.0
16 2× 108 780± 20 6.56 0.010 19.6± 1.0

optimal value now occurs at1n = 2 with a gain in efficiency of only 1.8. Another striking
feature in this table is the magnitude of the autocorrelation times. Forω = 1.6, about 20
independent configurations could be generated in 1 s whereas now more than 1 s isneeded
to generate an independent configuration with a slightly larger average length. This fact
severely limits our sample size and results in significantly poorer statistics in the collapsed
regime.

4.2. The reptation–Metropolis algorithm

We performed trial runs at three temperatures on the square lattice and at two different
temperatures on the simple cubic lattice for the R–M algorithm. We also used two multiple
Markov on both the square and cubic lattices, both employing 12 temperatures. In both
cases one of the multiple Markov chains used1n = 1 and the other used1n > 1. This
allowed us to distinguish between the effect of using a multiple Markov chain, and using
1n > 1. The results for these trial runs are summarized in three tables.

Table 4 shows the results obtained when simulating ordinary SAWs with the reptation
algorithm for different1n values. The results are qualitatively the same as for the B–S
algorithm, i.e. increasing1n increases the efficiency of the algorithm. We performed a
log–log plot for the autocorrelation time for the squared end-to-end distance,τint,R2

n
versus

1n to check our argument for the behaviour ofτint,R2
n
. A straight line fit to the data yielded

a slope of−1.56± 0.03 which was worse than the result obtained for the B–S algorithm.
Figure 2 shows a plot ofE against1n. We expectE ∼ 1n1.56 for small 1n and

E ∼ 1n0.56 for large1n. However, as for the B–S algorithm, the range of1n used in
the simulations are between these two asymptotic regimes. Thus, none of the behaviour
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Figure 2. E as a function of1n for the enhanced reptation algorithm.

Table 5. Autocorrelation times,τint,m, for ISAWs with n = 500 on the square lattice using the
R–M algorithm with multiple Markov chains.

Monte Carlo Efficiency
ω 1n steps τint,m tCPU (µs) tIND (s) E

No multiple Markov chains
1.8 1 5× 109 55 700± 2400 2.36 0.262 1.0± 0.04
2.1 1 1× 1010 101 000± 4000 2.21 0.446 1.0± 0.04
1.8 6 2× 109 18 900± 700 4.76 0.180 1.5± 0.1
2.1 5 5× 109 64 000± 6000 3.17 0.406 1.1± 0.1

Multiple Markov chains
1.8 1 1.5× 109 27 400± 1500 3.07 0.168 1.6± 0.1
2.1 1 1.5× 109 24 900± 1300 2.87 0.143 3.1± 0.2
1.8 6 1× 109 13 800± 700 6.18 0.171 1.5± 0.2
2.1 5 1× 109 18 500± 1000 4.12 0.152 2.9± 0.3

described above forE as a function of1n is evident in the plot.
In carrying out the simulations involving multiple Markov chains, we followed the

suggestions made in [3] for deciding on the number of chains to be used and on their
temperatures. During the trial runs, we kept track of the number of successful swaps between
all pairs of neighbouring chains. We also kept track of the fraction of time each chain spent
at each temperature. In our final runs, these two diagnostics indicated that the chains were
mixing well and that the frequency of successful swapping between neighbouring chains
was satisfactory.

Table 5 shows the results for simulating ISAWs in two dimensions with and without
multiple Markov chains. We simulated at 12 temperatures, namelyω = 1.4, 1.5, 1.6, 1.7,
1.8, 1.9, 1.95, 2.0, 2.05, 2.1, 2.15 and 2.2, however, we only present the results forω =1.8
and 2.1. As is apparent from the efficiency column, using1n > 1 does not provide a great
increase in performance, except for the caseω = 1.8 with no multiple Markov chains. The
use of multiple Markov chains make the algorithm roughly three times as efficient in the
low temperature phase. We found that there is a CPU overhead of approximately 30% when
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Table 6. Autocorrelation times,τint,m, for ISAWs with n = 500 on the cubic lattice using the
R–M algorithm with multiple Markov chains.

Monte Carlo Efficiency
ω 1n steps τint,m tCPU (µs) tIND (s) E

No multiple Markov chains
1.3 1 3× 109 33 000± 1400 10.4 0.686 1.0± 0.04
1.45 1 6× 109 66 000± 2800 8.3 1.096 1.0± 0.04
1.3 6 5× 108 4 300± 200 20.4 0.175 3.9± 0.3
1.45 6 3× 109 22 000± 800 11.6 0.510 2.1± 0.1

Multiple Markov chains
1.3 1 1.05× 109 16 200± 800 13.5 0.437 1.6± 0.1
1.45 1 1.05× 109 22 400± 1300 10.8 0.484 2.3± 0.2
1.3 6 5× 108 3 800± 150 26.5 0.201 3.4± 0.3
1.45 6 5× 108 8 450± 450 15.1 0.255 4.3± 0.4

using multiple Markov chains. This rather large overhead arises from the need to replace
single variables with arrays. Using1n > 1 together with multiple Markov chains in two
dimensions does not seem to increase the performance of the algorithm.

Table 6 shows the results for using the algorithm on ISAWs in three dimensions. The
multiple Markov chains employed 12 temperatures:ω = 1.1, 1.15, 1.2, 1.25, 1.3, 1.35,
1.375, 1.4, 1.425, 1.45, 1.475 and 1.5. The results are better than those observed in
two dimensions. However, this is not surprising since the self-avoidance constraint is
not as severe in three dimensions. We also see that (unlike two dimensions) the use of
multiple Markov chains together with1n > 1 achieves an increase in efficiency in the low
temperature phase. The larger CPU times per Monte Carlo step in three dimensions are
due to the use of hashing rather than using a bitmap. This is partly compensated for by
the smaller autocorrelation times that were observed around the effective critical point (for
n = 500, the effective critical point occurs atω ≈ 1.4).

5. Conclusion

We have added a Metropolis move as well as a new local move to the B–S and reptation
algorithms to simulate ISAWs in two and three dimensions. The use of the local move for
simulating ordinary SAWs greatly increased the efficiency—by an order of magnitude—of
both algorithms. There is also a substantial gain in efficiency even when interactions are
introduced and simulations are carried out in the low temperature phase or at the critical
point. To further improve the performance of the reptation algorithm at low temperatures,
we introduced a multiple Markov chain. This also increased the efficiency in both two and
three dimensions.
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